

The Best of The Liver Meeting®

CHOLESTATIC AND AUTOIMMUNE LIVER DISEASES

About the program:

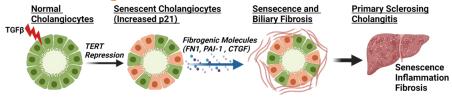
Best of The Liver Meeting 2022 was created by the Scientific Program Committee for the benefit of AASLD members, attendees of the annual conference, and other clinicians involved in the treatment of liver diseases. The program is intended to highlight some of the key oral and poster presentations from the meeting and to provide insights from the authors themselves regarding implications for patient care and ongoing research.

Use of these slides:

All content contained in this slide deck is the property of the American Association for the Study of Liver Diseases (AASLD), its content suppliers or its licensors as the case may be, and is protected by U.S. and international copyright, trademark, and other applicable laws. AASLD grants personal, limited, revocable, non-transferable and non-exclusive license to access and read content in this slide deck for personal, non-commercial and not-for-profit use only. The slide deck is made available for lawful, personal use only and not for commercial use. The unauthorized reproduction and/or distribution of this copyrighted work is not permitted.

Scientific Program Committee	
Chair	Laurie D. Deleve, MD, PhD, FAASLD
Co-Chair	Carla W. Brady, MD, MHS, FAASLD
President-Elect	Norah Terrault, MD, MPH, FAASLD
Senior Councilor	W. Ray Kim, MD, FAASLD
Annual Meeting Education Committee	Virginia C. Clark, MD, MS
Basic Research Committee	Bernd Schnabl, MD, FAASLD
Clinical Research Committee	Rohit Loomba, MD, FAASLD
CME Committee	Joseph K. Lim, MD, FAASLD
Hepatology Associates Committee	Elizabeth K. Goacher, PA-C, MHS, AF-AASLD
Inclusion and Diversity Committee	Lauren Nephew, MD, MAE, MSC, BA
Pediatric Hepatologist	Vicky Lee Ng, MD, FRCPC
Surgery and Liver Transplantation Committee	Bijan Eghtesad, MD, FAASLD
Training and Workforce Committee	Janice Jou, MD, MHS, FAASLD

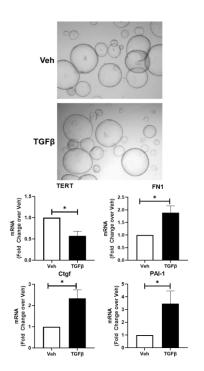
Telomere attrition in primary sclerosing cholangitis occurs through TGFβ-mediated repression of telomerase reverse transcriptase

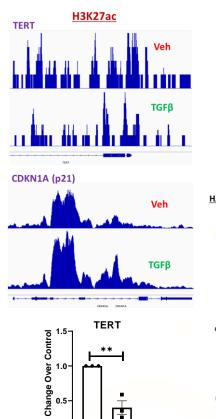

Objective

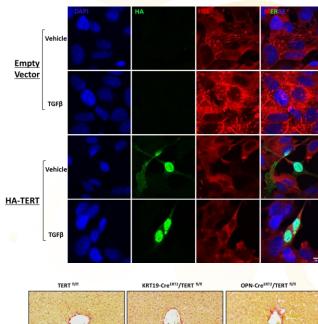
Investigate mechanistic relationship between TGFB signaling and telomere dysfunction in PSC.

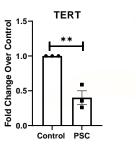
Methods

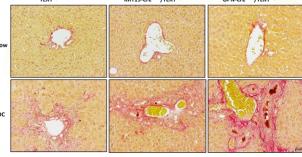
- Cholangiocyte-derived mouse organoids treated with TGFβ.
- PSC patient-derived organoids.
- Cholangiocyte-selective deletion of telomerase in mice.
- ChIP-seq on cholangiocytes treated with TGFβ.


Main Findings




Conclusions


PSC pathogenesis is in part mediated through TGFβmediated TERT repression, providing a rationale for TERTdirected therapy in PSC.


Jalan-Sakrikar N, et al., Abstract 3303.

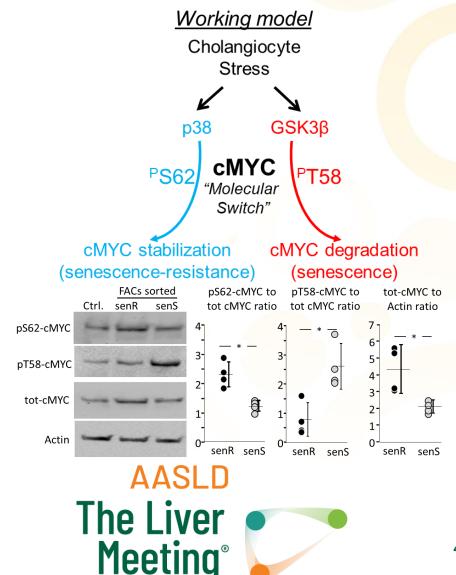
Phosphorylation of the cMYC proto-oncogene mediates the cholangiocyte response to senescence inducing stress

Aim

 To test the hypothesis that the proto-oncogene, cMYC, functions as a "molecular switch" driving the cholangiocyte response to stress.

Methods

 Normal human cholangiocytes were induced to senescence with LPS, FACs sorted into senescence-resistant (senR) and senescence-sensitive (senS) populations and immunoblotted for total and phosphorylated cMYC.


Main Findings

 In senR cholangiocytes, the p38 kinase phosphorylates S62cMYC leading to cMYC stabilization while in senS cholangiocytes, the GSK3β kinase phosphorylates T58-cMYC leading to cMYC degradation.

Conclusions

 The phosphorylation state of cMYC promotes either cholangiocyte resistance or sensitivity to experimentally induced senescence.

Splinter P, et al., Abstract 3304.

Cholestatic and Autoimmune Liver Diseases

The Best of The Liver Meeting® 2022

