

WASHINGTON **D.C.**

The Best of **The Liver Meeting**[®]

HEALTH DISPARITIES AND PUBLIC HEALTH

About the program:

Best of The Liver Meeting 2022 was created by the Scientific Program Committee for the benefit of AASLD members, attendees of the annual conference, and other clinicians involved in the treatment of liver diseases. The program is intended to highlight some of the key oral and poster presentations from the meeting and to provide insights from the authors themselves regarding implications for patient care and ongoing research.

Use of these slides:

All content contained in this slide deck is the property of the American Association for the Study of Liver Diseases (AASLD), its content suppliers or its licensors as the case may be, and is protected by U.S. and international copyright, trademark, and other applicable laws. AASLD grants personal, limited, revocable, non-transferable and non-exclusive license to access and read content in this slide deck for personal, non-commercial and not-for-profit use only. The slide deck is made available for lawful, personal use only and not for commercial use. The unauthorized reproduction and/or distribution of this copyrighted work is not permitted.

Scientific Program Committee

Chair	Laurie D. Deleve, MD, PhD, FAASLD
Co-Chair	Carla W. Brady, MD, MHS, FAASLD
President-Elect	Norah Terrault, MD, MPH, FAASLD
Senior Councilor	W. Ray Kim, MD, FAASLD
Annual Meeting Education Committee	Virginia C. Clark, MD, MS
Basic Research Committee	Bernd Schnabl, MD, FAASLD
Clinical Research Committee	Rohit Loomba, MD, FAASLD
CME Committee	Joseph K. Lim, MD, FAASLD
Hepatology Associates Committee	Elizabeth K. Goacher, PA-C, MHS, AF-AASLD
Inclusion and Diversity Committee	Lauren Nephew, MD, MAE, MSC, BA
Pediatric Hepatologist	Vicky Lee Ng, MD, FRCPC
Surgery and Liver Transplantation Committee	Bijan Eghtesad, MD, FAASLD
Training and Workforce Committee	Janice Jou, MD, MHS, FAASLD

Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.

Differences in mortality rates in inpatients with cirrhosis depends on the low-, middle-, or high-income country location: Multi-national C.L.E.A.R.E.D. consortium experience

Objective

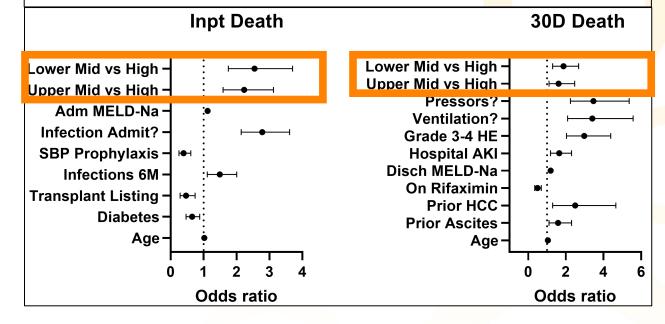
To define the impact of location in prediction of inpatient and 30-day mortality in inpatients with cirrhosis to study disparities.

Methods

- CLEARED prospectively enrolled non-electively admitted cirrhosis patients without COVID from all continents with only 50 patients per site to ensure equitable representation.
- Clinical details and inpatient & 30-day course were recorded along with World Bank classification of low/low middle income (LMI), upper middle income (UMI), and high income (HI).

Main Findings

- 2758 patients from 21 countries from all continents, including Africa and Australasia, were included. 727 were from L/LMI, 1050 UMI & 981 patients were from HI countries.
- In-hospital and 30-day mortality were lower in high-income countries (Figure) regardless of clinical variables, while transplant listing often not seen in LMI countries was protective.


Conclusions

Not being in a high-income country significantly increased the risk of inpatient and 30-day mortality despite controlling for clinical variables, likely due to disparities in access to transplant, which should be accounted for in global models.

Bajaj J, et al., Abstract 142.

Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.

Odds of Inpatient and 30-mortality in a Worldwide Consortium of Inpatients with Cirrhosis

3

Under-representation of racial and ethnic minorities in cirrhosis clinical trials

Aim

To characterize the reporting of sex, race, and ethnicity in randomized clinical trials (RCTs) of patients with cirrhosis.

Methods

We conducted a systematic review of all RCTs involving adult patients with cirrhosis published in 12 leading general medicine and gastroenterology journals with an impact factor of at least 10 from 2000-2021 using PubMed.

Main Findings

- In total, 133 RCTs (15 U.S., 118 international) were reviewed.
- Enrollment data on race and ethnicity were explicitly reported in only 12 (9%) RCTs: 8 U.S. (53%) vs. 4 international (3%).
- Only 3 U.S. RCTs explicitly reported the inclusion of American Indian/Alaska Native or Native Hawaiian/Other Pacific Islander individuals.
- Black and Hispanic individuals were under-represented in U.S. RCTs (29% vs 5%, 34% vs 6%, respectively, p<0.001) compared with CDC National Statistics.

Conclusions

American Indian, Native Hawaiian, Black, and Hispanic individuals are substantially under-represented in cirrhosis RCTs, and barriers to inclusion should be reviewed to improve clinical trial representation.

McLean Diaz P, et al., Abstract 143.

Author	Year	Intervention	Total Enrolled	Sex (n, % total)		Race (n, % total)				Ethnicity (n, % total)		
				Male		White (33% of U.S. cases with cirrhosis)	Black (29% of U.S. cases with cirrhosis)		American Indian or Alaskan Native	Native Hawailan/ Other Pacific Islander	Other	Hispanic/Latino (34% of U.S. cases with cirrhosis)
Boyer TD	2016	Terlipressin vs. Albumin for hepatorenal syndrome	199	120 (60.3%)	79 (39.7%)	177 (88.9%)	12 (6.0%)	5 (2.5%)	2 (1%)	0 (0.0%)	3 (1.5%)	32 (16.1%)
Curry MP ¹	2015	Sofosbuvir and Velpatasvir for decompensated HCV cirrhosis	267	186 (69.7%)	81 (30.3%)	239 (89.5%)	17 (6.4%)	5 (1.9%)	1 (0.4%)	1 (0.4%)	3 (1.1%)	39 (14.6%)
Pearlman BL	2015	Simeprevir/sofobuvir for compensated HCV cirrhosis	82	53 (64.6%)	29 (35.4%)	43 (52.4%)	39 (47.6%)	NR	NR	NR	NR	NR
Mullen KD	2014	Rifaximin as hepatic encephalopathy maintenance therapy	392	233 (59.4%)	159 (40.6%)	351 (89.5%)	17 (4.3%)	NR	NR	NR	24 (6.1%)	NR
Bass NM ^Y	2010	Rifaximin for hepatic encephalopathy therapy	299	182 (60.9%)	117 (39.1%)	257 (86.0%)	12 (4.0%)	12 (4.0%)	8 (2.7%)	3 (1.0%)	6 (2.0%)	NR
Schrier RW*	2006	Tolvaptan for hyponatremia	448	262 (58.5%)	186 (41.5%)	374 (83.5%)	34 (7.6%)	NR	NR	NR	9 (2.0%)	31 (6.9%)
Groszmann RJ*	2005	Beta-blockers for variceal primary prophylaxis	213	126 (59.2%)	87 (40.8%)	199 (93.4%)	4 (1.9%)	5 (2.3%)	NR	NR	NR	5 (2.3%)
Morgan TR¥*	2005	Colchicine for alcohol-related cirrhosis	549	538 (98.0%)	11 (2.0%)	433 (78.9%)	44 (8.0%)	NR	NR	NR	12 (2.2%)	58 (10.6%)

NR where data is not reported. ^xCurry MP (n=1), Bass NM (n=1), and Morgan TR (n=2) included subjects with missing data on race/ethnicity. *Schrier RW, Groszmann RJ, and Morgan TR trials classified Hispanic ethnicity as race.

The Liver

Meeting®

AASLD

Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.

Health Disparities and Public Health

The Best of The Liver Meeting[®] 2022

Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.